Nvidia DLI NLP Session Notes

November 5, 2023

Output
Probabilities

et
e

Add & Norm

Forward

Add & Norm

Multi-Head
Attention

Add & Norm
Feed
Forward

Nx
Ny Add & Norm
Add & Norm ‘Masked
Multi-Head Multi-Head
Attention Attention
A) A)
\ 2
Positional) A Positional
Encoding Encoding
Input QOutput
Embedding Embedding
Inputs Outputs
(shifted right)

Output
Probabilities

CEm
=N

Nx
Nx
8.
| L)
Positior o sitional
Encodi utput soding
Input P're- Pre-
processing processing
Inputs Qutputs
(shifted right)
A
e 1

Figure 1: Diagram of the transformer model as well as a high level labelling of the

steps, found on google images

Tokenizer: — Takes text, returns numerical representation made of "tokens" (tokens are

elements that represent parts of a word)

Embedding:

network can use

Easy to train a tokenizer for a specific purpose

Takes tokenized text, returns a different numerical representation that the

— some embeddings will take context and semantic meaning into account,
which will cause related words to be closer together

Positional Encoding:

Transformer Encoder:

Attention:

Self Attention:

Multi-head Attention:

Transformer Decoder:

BERT:

Embeddings make tokenized representations less sparse (think bag of words
with like 50 million possibilites, hella sparse)

— Transformers use simple learned embeddings

* A matrix of size [vocab| X diogel
Trained with transformer

+ In original transformer implementation, weights for input embedding,
output embedding and linear layer were the same

— Vocab size and dy,0qe are hyper parameters

— Since there is no recurrent or convolutional units, positional encoding is
used to infer order

— Same size as embedding so that they can be summed

— In the original paper, positional encoding was done with a combination of

sine and cosine functions

— Encodes sentence into hidden state vector

Focuses on important words

E.g. My loves playing fetch with a tennis

x dog will have low attention to fennis
% ball will have high attention to tennis and playing

— 3 important components; Query, Key and Value

* Bach has its own weight matrix

+ For each word,), K,V are generated by multiplying word represen-
tation with its respective weight matrix

. QKT
Attention(Q, K, V') = softmax \%
Vdy

— How are), K,V generated?

1. Take embedding of word with (potentially randomly initialized) matrix

2. Let X = [Xy,...,X,] be a matrix where each column is the embed-
dingof words 1,...,n

3.8t Q=XWC K=XWEKV=XWV

KT
4. Set self attention matrix Z = Attention(Q, K, V') = softmax (Q) %4
Vg

Same as regular attention, except multiple attention layers at once

Input is encoded vector from transformer encoder

outputs one word at a time

A model that only looks at the encoding part of the transformer model

only learns a good representation of the text

— loss evaluated with:

+ fill in the blanks, where we remove some percentage of words in a
sentence (15% for example) and tell BERT to guess the missing words

% Self supervised learning, loss does not require self annotated data

BERT Wordpiece Tokenizers: — Splits a word or token into smaller pieces

E.g Tokenization

Characters: 't’, ’'o’, 'k’, 'e’, 'n’, 'i’, 'z', 'a’, 't’, 'i’,

Words: tokenization
Subwords: "token", "##ization"

Wordpiece Algorithm: 1. Split word into char tokens

2. Build language model with above tokens

3. Generate new tokens by combining 2 with high liklihood
4.

Repeat until desired vocab size is reached

Pretraining: - On the fly preprocessing

Train and validation should have format:
[WORD] [SPACE] [WORD] ...

— OOV (Out of Vocabulary):

% Replace OOV with a token like [UNK]
% Split OOV at the character level
% Tokenize into subwords

NeMo: — Build around neural models
— Based on pytorch lightning

% 2 main components:
1. LightningModule

2. Trainer

— Every NeMo module has an example config file and training script

Data Prep: — Data needs to be in the following format before training:
[WORD] [SPACE] [WORD] ... [TAB] [LABEL]

— Header needs to be removed

Optimization and Performance: =~ — Pytorch JIT / Torch script
— ONNX Runtime
— ONNX Tensor RT
— Tensor RT

Triton Server: ~ — Supports:

Quantization: -

Concurrent Model Execution: -

Dynamic Batching: -

Scheduling Strategies: —

Stateless Inference:

Stateful:

Tensorflow Graph
Tensorflow Saved Model
Caffe 2 Exports

Custom models

A method to reduce size of an LLM

[O.
[O.

34 3.27 5.6]

quantization dequantization

34, 3.27, 5.6] ——— [64, 134, 217] — [0.41,

Helps with computation

Allows multiple models to run in paralell

Triton handles this automatically (shameless plug)

No overhead for parameter storage or fetching

Better GPU utilization

Batches are inferred at each request

Choice of scheduler or batcher depend on:

%

%

k

%

Stateful or Stateless nature of workload

Model is isolated or part of a pipeline

Option 1: Distribute request to all instances (preferred when states are
known and understood)

Option 2: Dynamic Batching

State is maintained between inferences

Option 1: Direct

Option 2: Oldest

3.

62,

5.29]

