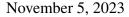
Nvidia DLI NLP Session Notes



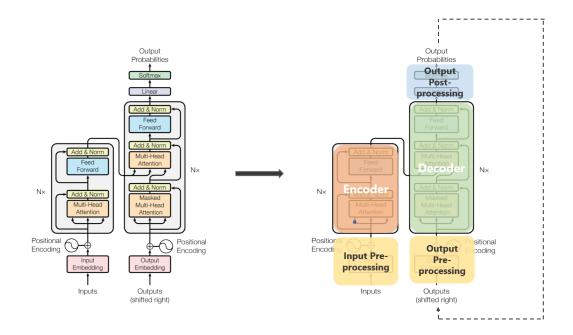


Figure 1: Diagram of the transformer model as well as a high level labelling of the steps, found on google images

Tokenizer:	- Takes text, returns numerical representation made of "tokens" (tokens are
	elements that represent parts of a word)

- Easy to train a tokenizer for a specific purpose

Embedding: - Takes tokenized text, returns a different numerical representation that the network can use

- some embeddings will take context and semantic meaning into account, which will cause related words to be closer together

	 Embeddings make tokenized representations less sparse (think bag of words with like 50 million possibilites, hella sparse)
	– Transformers use simple learned embeddings
	* A matrix of size $ vocab \times d_{model}$
	* Trained with transformer
	 In original transformer implementation, weights for input embedding, output embedding and linear layer were the same
	– Vocab size and d_{model} are hyper parameters
Positional Encoding:	 Since there is no recurrent or convolutional units, positional encoding is used to infer order
	- Same size as embedding so that they can be summed
	 In the original paper, positional encoding was done with a combination of sine and cosine functions
Transformer Encoder:	- Encodes sentence into hidden state vector
Attention:	- Focuses on <i>important</i> words
	E.g. My dog loves playing fetch with a tennis ball
	* dog will have low attention to <i>tennis</i>
	* <i>ball</i> will have high attention to <i>tennis</i> and <i>playing</i>
Self Attention:	- 3 important components; Query, Key and Value
	* Each has its own weight matrix
	* For each word, Q, K, V are generated by multiplying word representation with its respective weight matrix
	$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$
	- How are Q, K, V generated?
	1. Take embedding of word with (potentially randomly initialized) matrix
	2. Let $X = [X_1, \ldots, X_n]$ be a matrix where each column is the embed-
	ding of words $1, \ldots, n$ 3. Set $Q = XW^Q$, $K = XW^K$, $V = XW^V$
	4. Set self attention matrix $Z = \operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right) V$
Multi-head Attention:	- Same as regular attention, except multiple attention layers at once
Transformer Decoder:	- Input is encoded vector from transformer encoder
	- outputs one word at a time
BERT:	- A model that only looks at the encoding part of the transformer model
	 only learns a good representation of the text

	– loss evaluated with:
	 * fill in the blanks, where we remove some percentage of words in a sentence (15% for example) and tell BERT to guess the missing words * Self supervised learning, loss does not require self annotated data
BERT Wordpiece Tokenizers:	- Splits a word or token into smaller pieces
	E.g Tokenization
Cha	rracters: 't', 'o', 'k', 'e', 'n', 'i', 'z', 'a', 't', 'i', 'o', 'n'
	Words: tokenization
Sul	<pre>bwords: "token", "##ization"</pre>
Wordpiece Algorithm:	1. Split word into char tokens
	2. Build language model with above tokens
	3. Generate new tokens by combining 2 with high liklihood
	4. Repeat until desired vocab size is reached
Pretraining:	– On the fly preprocessing
	* Train and validation should have format:
	[WORD][SPACE][WORD]
	– OOV (Out of Vocabulary):
	* Replace OOV with a token like [UNK]
	* Split OOV at the character level
	* Tokenize into subwords
NeMo:	– Build around neural models
	– Based on pytorch lightning
	* 2 main components:
	1. LightningModule
	2. Trainer
	 Every NeMo module has an example config file and training script
Data Prep:	- Data needs to be in the following format before training:
	[WORD][SPACE][WORD][TAB][LABEL]
	- Header needs to be removed
Optimization and Performance:	 Pytorch JIT / Torch script
	– ONNX Runtime
	– ONNX Tensor RT
	– Tensor RT
Triton Server:	– Supports:

	Tensorflow Graph Tensorflow Saved Model Caffe 2 Exports Custom models
Quantization:	- A method to reduce size of an LLM
	E.g $[0.34 \ 3.27 \ 5.6]$ - $[0.34, \ 3.27, \ 5.6] \xrightarrow{\text{quantization}} [64, \ 134, \ 217] \xrightarrow{\text{dequantization}} [0.41, \ 3.62, \ 5.29]$ - Helps with computation
Concurrent Model Execution:	 Allows multiple models to run in paralell Triton handles this automatically (shameless plug)
Dynamic Batching:	 No overhead for parameter storage or fetching Better GPU utilization
Scheduling Strategies:	 Batches are inferred at each request Choice of scheduler or batcher depend on: * Stateful or Stateless nature of workload
Stateless Infere Stat	 * Model is isolated or part of a pipeline nce: * Option 1: Distribute request to all instances (preferred when states are known and understood) * Option 2: Dynamic Batching eful: * State is maintained between inferences * Option 1: Direct * Option 2: Oldest