
Nvidia DLI NLP Session Notes

November 5, 2023

Figure 1: Diagram of the transformer model as well as a high level labelling of the
steps, found on google images

Tokenizer: – Takes text, returns numerical representation made of "tokens" (tokens are
elements that represent parts of a word)

– Easy to train a tokenizer for a specific purpose

Embedding: – Takes tokenized text, returns a different numerical representation that the
network can use

– some embeddings will take context and semantic meaning into account,
which will cause related words to be closer together

1

– Embeddings make tokenized representations less sparse (think bag of words
with like 50 million possibilites, hella sparse)

– Transformers use simple learned embeddings

* A matrix of size |vocab| × dmodel

* Trained with transformer

* In original transformer implementation, weights for input embedding,
output embedding and linear layer were the same

– Vocab size and dmodel are hyper parameters

Positional Encoding: – Since there is no recurrent or convolutional units, positional encoding is
used to infer order

– Same size as embedding so that they can be summed

– In the original paper, positional encoding was done with a combination of
sine and cosine functions

Transformer Encoder: – Encodes sentence into hidden state vector

Attention: – Focuses on important words

E.g. My dog loves playing fetch with a tennis ball

* dog will have low attention to tennis

* ball will have high attention to tennis and playing

Self Attention: – 3 important components; Query, Key and Value

* Each has its own weight matrix

* For each word, Q,K, V are generated by multiplying word represen-
tation with its respective weight matrix

Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

– How are Q,K, V generated?

1. Take embedding of word with (potentially randomly initialized) matrix
2. Let X = [X1, . . . , Xn] be a matrix where each column is the embed-

ding of words 1, . . . , n
3. Set Q = XWQ, K = XWK , V = XWV

4. Set self attention matrix Z = Attention(Q,K, V) = softmax
(
QK⊤
√
dk

)
V

Multi-head Attention: – Same as regular attention, except multiple attention layers at once

Transformer Decoder: – Input is encoded vector from transformer encoder

– outputs one word at a time

BERT: – A model that only looks at the encoding part of the transformer model

– only learns a good representation of the text

2

– loss evaluated with:

* fill in the blanks, where we remove some percentage of words in a
sentence (15% for example) and tell BERT to guess the missing words

* Self supervised learning, loss does not require self annotated data

BERT Wordpiece Tokenizers: – Splits a word or token into smaller pieces

E.g Tokenization

Characters: ’t’, ’o’, ’k’, ’e’, ’n’, ’i’, ’z’, ’a’, ’t’, ’i’, ’o’, ’n’

Words: tokenization

Subwords: "token", "##ization"

Wordpiece Algorithm: 1. Split word into char tokens

2. Build language model with above tokens

3. Generate new tokens by combining 2 with high liklihood

4. Repeat until desired vocab size is reached

Pretraining: – On the fly preprocessing

* Train and validation should have format:
[WORD][SPACE][WORD]...

– OOV (Out of Vocabulary):

* Replace OOV with a token like [UNK]

* Split OOV at the character level

* Tokenize into subwords

NeMo: – Build around neural models

– Based on pytorch lightning

* 2 main components:
1. LightningModule
2. Trainer

– Every NeMo module has an example config file and training script

Data Prep: – Data needs to be in the following format before training:

[WORD][SPACE][WORD]...[TAB][LABEL]

– Header needs to be removed

Optimization and Performance: – Pytorch JIT / Torch script

– ONNX Runtime

– ONNX Tensor RT

– Tensor RT

Triton Server: – Supports:

3

Tensorflow Graph

Tensorflow Saved Model

Caffe 2 Exports

Custom models

Quantization: – A method to reduce size of an LLM

E.g [0.34 3.27 5.6]

– [0.34, 3.27, 5.6]
quantization−−−−−−→ [64, 134, 217]

dequantization−−−−−−−→ [0.41, 3.62, 5.29]

– Helps with computation

Concurrent Model Execution: – Allows multiple models to run in paralell

– Triton handles this automatically (shameless plug)

Dynamic Batching: – No overhead for parameter storage or fetching

– Better GPU utilization

Scheduling Strategies: – Batches are inferred at each request

– Choice of scheduler or batcher depend on:

* Stateful or Stateless nature of workload

* Model is isolated or part of a pipeline

Stateless Inference: * Option 1: Distribute request to all instances (preferred when states are
known and understood)

* Option 2: Dynamic Batching

Stateful: * State is maintained between inferences

* Option 1: Direct

* Option 2: Oldest

4

