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1 Abstract

Since the origin of the game of basketball, players, coaches, and fans have faced
the challenge of making decisions to increase the chances of their team winning.
Most often statistics are employed to keep track of player and team performance
on a regular basis. These stats include points per game, rebounds per game,
assists per game, player +/-, PER (player efficiency rating) and more. Given
such player statistics, an agent can be used to decide what the player should do
in a given situation. For example, player A near the three point line may wish
to pass to player B on the three point line who has a better 3-point percentage
in order to improve the average number of points won. Reinforcement learning
was used to determine the most effective decision in this project.

Reinforcement learning is a machine learning method that relies on re-
wards and punishments to make the best decision in each state. As an example,
consider the game Flappy Bird. This game involves a bird and numerous pipes,
and the player needs to tap the bird at the correct frequency so the bird goes
through the pipe without hitting it. The player gets a point for each pipe the
bird successfully traverses through. A reinforcement learning task can be used
to teach an agent to maximize the score. In this case, the state can be the bird’s
current position and whether it’s going up or down, as well as the height of the
nearest pipe. The agent will be rewarded some positive number of points each
time it goes through a pipe and loses some points each time it hits a pipe. We
train the agent to maximize the number of points, and with enough time the
agent will be able to identify the frequency of taps needed to go through each
pipe.

In this project, a similar method was applied to make decisions on an NBA
court (from an offensive perspective). Using NBA stats, a text-based basketball
game environment was created. Given a set of player’s stats, defender stats,
team stats and working under the assumption that defence was played man-to-
man, numerous episodes were simulated until the agent converged on an optimal
policy for making decisions at each state. To achieve this, deep Q-Learning was
used [9].

It was shown that high performing players followed the model closely, whereas
low performing players tended to stray away from the model’s recommendations.
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2 Introduction

2.1 Terminology and Definitions

Definition 1 (Agent) The agent is the learner and decision-maker. The agent
is what interacts with the environment and learns based on the feed back of the
environment.

Definition 2 (State) a representation of the current environment the agent is
in.

Definition 3 (State space) Set of all possible states, often denoted with S

Definition 4 (Action space) Set of all possible actions, often denoted with
A

Definition 5 (Policy) Often denoted with π(a|s), is a probability distribution
of state to action. Let s be a state, and a be an action, π(a|s) = P(a|s), or the
probability that the agent takes action a when in state s. The optimal policy,
denoted with π∗, is a policy that maximizes the value of all states.

Definition 6 (Step function) A function that performs one action and re-
turns the reward observed after taking that action.

Definition 7 (State-Value function) Let the set of states be S, set of actions
A, and the set of real numbers be R. A state-value function is a function
S × A → R that maps each state and action to a value. The higher the value,
the more favorable it is to take said action when in that state. Often denoted
with q∗.

Definition 8 (Value function) A function S → R that returns the value of
a state when using a specific policy π. Often denoted with vπ. The higher the
value of the state, the more favorable it is to get to that state.

Definition 9 (Q-Learning) A method of reinforcement learning that works by
predicting and converging to a State-Value function. This is different to other
methods that rely on converging to an optimal policy or optimal value function.

Definition 10 (Back propagation) A method in machine learning used to
optimize a neural network. Back propagation uses residual error of predicted
value to adjust weights of a neural network to get a closer prediction value.

Definition 11 (ϵ-Greedy) ϵ-greedy is a method of exploration for an agent
during its training phase. It is split into 2 phases. The exploitation phase,
where it always performs the action it thinks is best. The exploration phase
where it takes a completely random action. The exploration phase happens with
probability ϵ. The exploitation phase thus happens with probability 1− ϵ.
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Definition 12 (Activation function) A function used in artificial neural net-
works that outputs a small value for small inputs and a larger value for inputs
that exceed a threshold. For example, consider the sigmoid activation function

1
1+e−x . Input values that are negative are close to 0, positive input values are
close to 1.

Definition 13 (Residuals) The difference between predicted value and true
value. Let predicted value be ŷ and true value be y. Residual r = y − ŷ

Definition 14 (Optimal value function) The value function under an opti-
mal policy π. Often denoted with v∗. v∗(s) = max

π
vπ(s)

Definition 15 (Epoch) Refers to the one entire passing of training data through
the algorithm, multiple epochs can be seen as doing multiple sets of a similar
exercise. Multiple epochs help the neural network learn. For our implementa-
tion epochs were crucial for memory management (doing 600,000 consecutive
episodes requires a lot of RAM, doing 200 epochs of 3000 episodes was easier
on the computer).
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2.2 Reinforcement Learning in a Nutshell

Reinforcement learning is a machine learning training method in which desired
behaviours are rewarded and undesired behaviours are punished. Reinforcement
learning makes the agent sense and interpret its environment 1, take actions and
decisions, and learn by trial and error. This can be achieved in numerous ways,
and with many algorithms. Generally, however, the algorithms involve converg-
ing to an optimal policy, value function or state-value function. Evaluating any
of those results in an optimal way of making decisions. For example, evaluating
the optimal state-value function as in Q-Learning gives us a function that tells
us how good or bad each action is in each state, and then one simply chooses
the action that yields the largest value. Further, the agent learns by evaluating
what reward or punishment is received in the environment after performing an
action, and then uses that information to evaluate and converge to a better pol-
icy, value function or state-value function. In general, the reinforcement learning
process is as follows; first, the agent chooses and performs an action, then the
environment responds with the next state after performing the action, and the
reward or punishment for doing that action. Then with both the reward and
next state the agent learns and improves until it converges on an optimal deci-
sion making policy. Historically, reinforcement learning has been used to train
self driving cars, industry automation, finance, translation and many other real
world problems that can be broken down into a decision process [13]2.

1The term interpret is used loosely here, in most cases the interpreter would do that job
and give the agent a vectorized representation of the state, but the term interpret is used to
show that the agent must understand its state in order to make decisions

2To be more specific, the processes need to follow a Markov decision process, which can
be described as a decision process related to maximizing reward, where the data available is
the set of states, set of actions, a probability distribution of states and next states given an
action and a reward function of going from one state to another [13]
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2.3 Neural Networks in a Nutshell

Artificial neural networks (ANN) is a computational or mathematical model
of processing elements that receive inputs and provide outputs based on prede-
fined activation functions. This model loosely models the neurons in a biological
brain. Neural networks work as a collection of perceptrons which are meant to
simulate neurons. Concretely, 1 perceptron takes in many inputs and spits out
a binary output 3. The way it accomplishes this is with an activation func-
tion. There are many activation functions, but the most common are sigmoid(

1
1+e−x

)
, RELu (max(0, x)), and arctan (tan−1(x))4. The process with a single

perceptron is as such:

Layering many perceptrons gives us a neural network, where the output
may be multiple instead of just 1. When there are multiple layers, the middle
layers are called hidden layers. They are called hidden because often there is no
interaction with those layers outside of the network itself, and often times there
is no way to know the exact weights that are inside, nor is it necessary. The
way a neural network is trained is with forward and back propagation. First, a
neural network with random weights is initialized. Then with training data you
feed the data forward and see the output. Then you calculate the residual and
back propogate the error and adjust the weights so that you are closer to the
correct answer. You continue this process until the residuals are as low as you
want them to be [10].

Neural networks in practice are quite versatile. When they were created
they were initially used for classification problems, such as identifying hand
written digits and OCR (optical character recognition). However, in modern
times creative neural network structures have allowed for more versatile uses
such as CNNs (convolutional neural networks) for better image classification,
GANs (generative adversarial network) for super resolution and image creation
(as in DALL-E) and of course, reinforcement learning. In this project specifically
it was used as the brain of our agent and predicts a Q-function that evaluates
the value of each action.

3In practice, it depends on the activation function and is most often not exactly binary
4If we are looking at a single perceptron and using a sigmoid activation function, then we

essentially have reformatted a logit regression
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2.4 Overview of Approach

In order to tackle the problem of decision making on the court, one must
first describe what decisions need to be made and in what context. The rein-
forcement learning agent requires both a state 5 and reward function and with
a historical record of both will pick an action 6. Thus let our state space be S,
action space be A and finally reward function be R : A × S → R. Our state
space S is the following:

• Current player position (x, y)

• Team mate positions

• current player stats (distance per dribble, field goal at midrange, paint,
threepoint line, offensive rebounds, etc.)

• defending player stats (steal, block, defensive rebounds, etc.)

• distance from net

• is at three point distance (boolean)

• time on shot clock

The set of actions are:

• Shoot

• Dribble (forward, backwards, to the side, diagonally) one unit (unit is
relative to each player)

• Pass to team mate

And rewards as such:

Result Reward
2 point made 2
3 point made 3

offensive rebound 1.5
free throw made 1
shot blocked -1.5
ball stolen -1.5

defensive rebound -1.5
shot missed -1.5
otherwise 0

5a state is essentially a snapshot of what the playing field currently looks like
6in the case of deep Q-learning, the historical record will be in the form of the neural

network’s weights
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Punishments for turnovers and defensive rebounds were estimated with a
ratio of points off turn overs by number of turn overs, since there was no sig-
nificant correlation between blocks, steals or defensive rebounds and number of
points scored (more on that in section 3.4).

Deep Q-learning (using a neural network) was the approach taken due to the
size of the state. One state vector had more than 130 elements it was keeping
track of, thus making a discrete table with every possible state we came across
was unrealistic.

To train the model, an ϵ-greedy initial approach is taken 7. Then a data set
of current state, next states and rewards is made. This data set is then used to
optimize the model. A more detailed explanation follows in section 4.

Thus, the entire process looks like [11]:

7An ϵ-greedy approach is an approach where the agent picks the best known action at
each step, but with probability ϵ pick a completely random action instead. This approach is
used to promote exploration of the agent, since it may think it found the best move, but after
taking a random action finds that the random action was indeed better.
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3 Environment

The environment was chosen to be text-based due to ease of creation. In an
ideal world, access to the code of an NBA2K game would have been the most
efficient way of approaching this problem, since the stats used are already accu-
rate for each player, and they have far more complicated states such as fatigue,
automatic movement of other players while idle and more which were were not
tackled in this environment 8. Further, there are examples of text based en-
vironments with random events being able to effectively train reinforcement
learning agents as in Microsoft’s TextWorld [6]. However, unlike TextWorld
which relies on randomly generated events, this environment was made as sta-
tistically accurate as possible by using what stats were made publicly available
by the NBA, such as field goal percentages, pass completion rates and others[2].
Essentially, based on scraped data, player objects were created. The environ-
ment then (based on action selected) utilizes the objects created and statistics
available to finally predict whether that action was a success or not. For ex-
ample, if the agent chooses to shoot from the three point line, the environment
will find the shooting players three point percentage, and then flip a coin (note
that the coin would be unfair, since the probability of making a three pointer
would in all likelihood not be 50%). If the coin lands on heads, we consider the
shot made, otherwise failed. If the shot is made, the environment spits out a
reward of 3 points. If the shot was blocked, spits out a reward of -1.5. Of course
more considerations were made for each action such as getting fouled, but in
the subsections below go in more detail about each.

Further, for the task at hand, an episodic method was chosen. In this case,
each episode has a 24 second limit (shot clock). An episode continues until either
a shot is made or the ball is turned over. When a shot is made, its respective
reward is given. When turned over, its respective punishment is given (see
reward table).

3.1 Shooting

NBA had statistics available for shots beyond the three point line, at mid-range,
in the paint or in restricted area. However, nothing was available for exact (x,y)
positions. Thus, to evaluate field goal percentage, the solution was to just see
what area the player was in and use the respective statistic. For example, if the
player was standing in mid range, then the mid range field goal would be used.

8An interesting aside, Max Holloway (a UFC fighter) was quoted on using the UFC video
game to try out different moves and tactics in a fight against his future opponent, and with
great success[5]. This may show that video games (if made accurately) may help with the
tactical aspects of sports
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Figure 1: The half court divided into the shooting ranges (going from furthest
from net to closest), three point range, mid range, in the paint and restricted
area

One thing that was evaluated but later was found insignificant was the ef-
fect of different variables on field goal percentage. One such metric was shot
clock time 9. However, the model found no significant correlation between shot
clock and field goal percentage (see Table 3). Most R2 results were extremely
small, showing almost no significant correlation between shot clock and field
goal percentage.

3.2 Passing

Passing ability is another key factor the model needs to account for. Some
NBA players are naturally better passers than they are shooters, and their

9wanted to evaluate the quality of being ”clutch”, in essence, see if there was a possible
regression formula that can be used to increase or decrease a shooters base field goal percentage
based on time left on the shot clock
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vision on the court allows for more efficient ball movement and sets up other
players for more favourable shots. NBA Court Optix had passing data available
between 11 regions they specified. These were the regions used to evaluate
passing completion10.

Figure 2: The 11 passing regions as offered by NBA Court Optix

The NBA did not have the in depth data available for what was required
for the model, so some improvisation was needed. Because the model was so
dependent on the location of players on the court, the general passing efficien-
cies of the team from an arbitrary region A would not suffice. Let P(Pi,j) be
the probability a pass is completed from region i to region j, and P(Pi) be
the probability of completing a pass from region i. One could not simply set

10This is different from the 4 shooting regions. However, since we tracked exact (x,y)
coordinates of each player, evaluating stats for passing vs shooting essentially boiled down to
which region the point fell in and using that respective statistic. For example, if the player
was in an arbitrary passing region i, and was also in the midrange shot region, we would use
the pass completion statistics from region i and shot statistics from midrange
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P(Pi,j) = P(Pi), because the probability of one is larger than the other, since
one contains the event of the other 11

A team-by-team passing network displayed the passing completion percent-
age from each region on the court, while also showing assist percentage from one
specific area of the court a to another, b [3]. Let Pa,b(A) be the probability of
a given pass being an assist and P(Si) be the probability of a shot being made
from a specific zone i.

From this, assuming P(Pa,b) and P(Sb) are essentially independent, one can
derive the equation:

Pa,b(A) = P(Pa,b ∩ Sb) = P(Pa,b)P(Sb) (1)

Rearranging, one arrives at:

P(Pa,b) =
Pa,b(A)
P(Sb)

(2)

Note that if P(Si) = 0, then P(Pa,b) = 0.
Of course, this does not account for passes that do not immediately result in a

shot attempt, whether that be the receiving player dribbling the ball to another
region of the court or passing it again to a different player. To somewhat counter
this, and mitigate the influence of regions where the assist percentage is low,
the weighted average is taken of 1 and 3, where P̃a,b , Aa,b ∈ N denote the total
number of completed passes and total number of assists respectively from zone
a to b:

P(Pa,b) =

Aa,b
Pa,b(A)
P(Sb)

+ (P̃a,b −Aa,b)P(Pa)

P̃a,b

(3)

Again, if P = 0, then P(Pa,b) = 0. I.e. if historically, there are no passes
made from region a to region b, then the environment considers the probability
of that pass being made as 0 12.

3.3 Dribbling

Dribbling is an important component that was investigated to make the envi-
ronment as statistically accurate as possible. It’s essential to measure the time
and number of dribbles it takes for a player to move from their starting posi-
tion to another position, when an arbitrary direction vector is applied to their
starting position.

The equations required a lot of factors to be considered such as a player’s
average speed, average number of dribbles per second and average stride length
by position to ensure accuracy (see Table 1). The NBA did not have data on

11The probability of making a pass from region a would also count the probability of making
a pass from region a to region b. More clearly, P(Pa) = P(∪iPa,i)

12In practice, the data only has a frequency of 0 passes for passes that would, in reality, be
a bad pass to make, for example trying to pass from the left corner three to the right.
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players stride lengths, to account for stride length we will assume 1 stride =
1 dribble. The equations used within the function to calculate the time and
number of dribbles are:

Time to move =
Distance Travelled

Average Player Speed
(4)

Distance Travelled = Time to move×Average Player Speed (5)

Number of dribbles = Time to move×Dribbles per Second (6)

Equations (4) and (5) are based on the fact that speed = distance
time .

The function used in the simulations takes three arguments: the player’s
starting position, the direction vector and the position. Using the previously
stated information and the three arguments, we are able to get the distance
travelled per dribble, the time it took to accomplish that dribble and the number
of dribbles taken. These were necessary for simulating the act of a dribble to
find the new position after dribbling, and how much time passed after dribbling
(dribbling when there is less than 1 second left on the shot clock would not be
ideal).

3.4 Turn Overs

The environment treats a ball lost as a turn over13. Thus, if there is a block,
steal or defensive rebound the environment treats it as a turn over and ends the
episode. The punishment for a turn over was set to -1.5. This is the approxi-
mate average ratio of points off turn overs to turn overs (per 100 possessions).
Expected number of points gained per turn over was not used because there
was no significant correlation (see Table 3). Other types of turn overs that are
not punished are of course when the ball is given back to the other team after
a shot or a free throw is made. In both cases the reward depends on number of
shots made (1 point per bucket).

3.5 Interaction

The way the environment works step by step is that it first gets initialized with
a start() function. This function will initialize all players in random positions
on the court, then return the initial state with the information highlighted in
Section 2. Then the agent will pick some action from the available actions,
either at random or from its neural network. The action is passed to a step

function, that performs the action and sends back an observed reward. Then

13i.e. ignores cases of a block going back to an offensive player because of how rarely they
happen
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we query for the current state (after taking action), and repeat the process until
the episode terminates (see the environment process figure in the appendix)

Also, at each ”step”, since it is text based, messages are outputted. One
sample message taken during the training process14:

O.G. Anunoby has ball!

O.G. Anunoby passes to Gary Trent Jr. in box 1

O.G. Anunoby makes pass!

Gary Trent Jr. has ball!

Gary Trent Jr. dribbles BACKWARDS!

Gary Trent Jr. has ball!

Gary Trent Jr. dribbles BACKWARDS!

Gary Trent Jr. has ball!

Gary Trent Jr. dribbles BACKWARDS!

Gary Trent Jr. has ball!

Gary Trent Jr. dribbles FORWARD!

Gary Trent Jr. has ball!

Gary Trent Jr. dribbles FORWARD!

Grayson Allen fouls!

Gary Trent Jr. attempts free throws!

Free throw made!

Free throw made!

Free throws done!

14It is interesting to see how the agent learns. During this run, the agent realized that it
has a high likelihood of getting fouled, and a high likelihood of making a free throw, and thus
kept dribbling until it got fouled. This was later adjusted so that the probability of getting
the ball stolen increased with each dribble to offset the probability of a foul. Nevertheless, it
shows that the agent will find creative ways of increasing the number of points.
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4 Algorithm

Deep Q-Learning was the methodology used to make the best decisions.
Let the set of states be S, and set of actions A. Let q∗ : S × A → R be a
function that maps each state and action to its value ∈ R 15. By knowing what
q∗ is, we can determine what the best action to take for a state s is by taking
argmaxa∈A q∗(s, a)[13]. Deep Q-Learning uses a neural network to estimate q∗
by using the following:

Q(st, at) := Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (7)

It has been shown that Q(st, at) converges almost surely with q∗ as t→∞[13].
To actually predict this function, one first initializes two neural networks Qe

and Qf , as well as a probability ϵ. To start, to promote exploration, ϵ would
be set to a value close to 1, then as we iterate through episodes, decay epsilon
by some function δϵ. The goal is to decrease exploration as we increase the
network’s accuracy. Qe represents an experimental network, whose weights we
will copy over every k steps to Qf . After initializing the networks, using Qe we
experiment with the environment and collect some sample data. The sample
data will consist of the current state, the action taken, the next state and the
observed reward. Then with some batches of this sample data, optimize Qe. By
knowing the current state, action taken and reward upon action, we can utilize
an error function to fix the networks current rating of each action in each state.
Then every k steps, copy over all the weights from Qe to Qf . The use of two
networks is to establish and ensure stability of our agent.

Optimization is done using a stochastic gradient descent algorithm 16 with
a mean squared error-esque loss of the following form that is derived by taking
parts of equation (6):

L(st, at) := (Q(st, at)− (rt+1 + γmax
a

Q(st+1, a)))
2 (8)

For this task, the number of collection steps was set to 3000, and instead
of waiting for convergence to 0, did 200 epochs of training (200 sets of 3000
episodes, this was chosen because the errors converged to near 0). Further, ϵ
was set to 0.9, and δϵ = −(0.1 × n

375 ). δϵ was chosen this way so that at the
end of the episode ϵ was still around 0.1, leaving a small chance of discovering
new actions. To find this, first one solves the following ϵ0 − (δ × n

x ) = ϵf for x,
where ϵ0 is the starting epsilon (in our case 0.9), δ is the decay rate (we chose
0.1), n is the number of episodes (in our case 3000) and ϵf is the desired final
epsilon (we chose 0.1). This left us with x = 375. From here its clear that δϵ is
represented in the −(δ× n

x ) of the aforementioned equation. Thus after finding
x, we have our δϵ as mentioned before. The number of steps we copy over the

15the higher the number the more favorable it is to take action a when in state s
16stochastic gradient descent is a methodology that walks along the gradient of the error

function until it hits a minimum, rather than find a actual solution, as is done with linear
regression
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weights, k was set to 1500. For actually constructing the neural network as well
as train knowing the loss, python’s pytorch package was used.

Thus, the algorithm for training a Q-learning agent is as follows [11]:

Algorithm 1 DQNAgent

Require: Qe, Qf , ϵ
while not converged do

for number of collection steps do
s← current environment state
e← U(0, 1)
if e < ϵ then

A← random action
else

A← argmaxa Qe(S, a)
end if
S′, r ← Observation when taking action a
Store (S,A, r, S′)
ϵ← ϵ− δϵ

end for
Optimize Qe using Q-value evaluated with stored tuples
Copy weights from Qe to Qf every k steps
Reset ϵ

end while

17



5 Discussion and Conclusion

Figure 3: A plot of the loss of the neural network over training Figure 4: A plot of the average reward in the final epoch

5.1 Training

As one can see on the figure in the left, over the 600,000 episodes, we do have a
loss convergence to near 0. The major spikes were due to random exploration.
Essentially the spikes tell us that at one point the agent knew what the best
action was, but upon some exploration, realized that it did not know what
the best action was and thus corrected itself. After all the episodes, the error
converged to 0 even during the random exploration 17 telling us that it finally
converged to some accurate function of evaluating an action in a given state. To
further show this, if we look at the second figure of the reward plot, we can see
as the episode number approaches 3000, the average rewards increase. Again,
this is because as the number of episodes increases, ϵ decreases, meaning we use
the network more and more. Thus the increase in reward on average shows that
the network performs better than randomly choosing an action.

17Since random exploration spikes every 3000 episodes, due to ϵ being set to 0.9 at the start
of each epoch, and the flat tail at the end remains low for more than 3000 episodes
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5.2 Insights

To evaluate the validity of the model, it was tested on five players from the
Toronto Raptors as well as the top three and bottom three teams in the NBA.
As the episodes were running for each player; the player’s states, the best action
the model took, and the (x,y) coordinate the model took it from were noted to
generate heat-maps and shot charts to further analyze the validity of the model.
For example, Scottie Barnes heat-map (Figure 6) shows that his probability for
maximum reward was high when an action was taken in the bright red area. This
means that majority of his shots were successful from that location, and passes
from there led to a sequence of successful plays. However, the light blue areas
were where his probability of maximum reward was low relative to the bright
red areas. Comparing this to his shot-chart (Figure 5), it can be seen that the
majority of the shots that Barnes made aligned with the high probability of
maximum reward position on his heat-map. The shots he missed are visible
in the light purple areas, indicating that he should not take shots from those
positions. This relatively aligned with his real life shot-chart from 77 games
this season, where he made 33.3% from that position. Another player whose
heat-map was interesting was Pascal Siakam (figure 13) as we could not generate
a shot-chart for him. He tended to frequently dribble left, right, or straight
into the paint before ultimately making a pass to OG Anunoby. The model
was mimicking his real life style of play as looking at his passing network on
NBA CourtOptix, it can be seen that majority of his passes from his starting
position (within the model) and the paint were mostly directed towards OG
Anunoby. This further validates our model as the model seems to be mimicking
the player real life style of play. Since the model looks for the best possible
decision to maximise reward, it raises the question; were players/teams whose
in real life shot-charts/heat-maps followed those of the models, paid more and
had more wins than losses? The top three best teams (Celtics, Bucks, 76ers)(14)
and bottom three worst teams (Pistons, Rockets, Spurs)(20) in the NBA were
used to test this theory. It was found that the bottom three teams shot-charts,
majority of the times went against their real life shot-chart and vice-versa. For
example, the Detroit Pistons Isaiah Stewart was going against our model and
not shooting as often from mid-range whereas our model predicted that 97%
of the shots (14) he would take from that position would maximise the reward.
This tells us that Isaiah Stewart should shoot from that position as probability
of maximum reward is high. Another example is San Antonio Spurs Keldon
Johnson, who scored 67% of his mid-range shots with our model (24) whereas
his NBA shot-chart this season, he has significantly low amount of shots from
there (25). These three bottom teams seem to have a low correlation with their
official shot-charts and our models shot-charts indicating the reason for their
high loss record. The top three teams in the NBA seemed to follow our model
relatively well. For example, Milwaukee Bucks Brooke Lopez was making 42%
(16) of his shots from mid-range which closely followed his official NBA shot-
chart of 46.7% shots made from mid-range (17). Boston Celtics Jayson Tatum
was averaging 52% shots made from mid-range (18) which again closely followed
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his official NBA shot-chart from that position with 48.8% shots made from
mid-range (19). This means the model thought that these areas were the best
places for the players to shoot to maximize the reward and this mimicked their
exact play-style in real life. It seems that our models favoured high performing
teams rather than low performing teams. The teams that followed our models
had more wins than losses and the opposite for the ones that didn’t. Upon
further investigation, it was found that players who followed our model received
significantly higher pay than those who did not as shown in the table below. For
example, Jayson Tatum has a salary of 30 million USD whereas Isaiah Stewart
has a salary of 3.4 million USD.

Table 1: Relationship Between Player Salaries (22/23) and our Model

Followed Model Salary (USD) Went Against Model Salary (USD)
Jason Tatum $30,351,780 Isaiah Stewart $3,433,320
Pascal Siakam $35,448,672 Keldon Johnson $3,873,024
Brooke Lopez $13,906,976 Kevin Porter $3,217,631

[1]

All this validates our model and may show that players and teams whose
real-life shot-charts/heat-maps followed those of the models were getting paid
significantly more and their teams had significantly more wins than losses this
season.

5.3 Issues

Of course, this model does have it’s shortcomings due to a few factors. The
first being data availability. The entire simulator was built on publicly available
data which was, unfortunately, quite generic. For example, if a player was just
forward of the three point line, the shot would have the field goal percentage of a
mid range shot, when the difficulty of it is in fact quite similar to a three pointer.
Ideally, a field goal percentage of each (x,y) or by distance from net would have
been the better metric to use. Further, because of data availability, for each
statistic used, the most granular level data was used as the deciding probability
of the success of each action. This caused a few discrepancies. For example, for
shot completion, we only had data for midrange, three point, in the paint and
in restricted area. This gives us 4 shooting regions. For passing however, NBA
Court Optix offers passing data for 11 regions across the half court. To combat
this discrepancy in data, we simulated each action with exact (x,y) coordinates.
With exact (x,y) coordinates, it was a matter of just querying which region the
point was contained in and using its respective statistic. Another issue faced
was training time. The model did converge after numerous episodes, however,
there were restrictions placed which reduced the overall generality of the model.
For example, in all simulations, the guards started past the three point line,
and the forwards as well as centers started somewhere in the mid-range to paint
area. Thus, the generality of the model depends on whether or not at some
point the model tried going towards a different region on the court and found
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success. Another issue was the lack of consideration of external forces on the
current state, such as fatigue, player’s dribbling skill, team mate position IQs
and many more. Taking these metrics into account may have promoted play
styles that relied more on passing and moving the ball than to set up shots
as the model currently converged to. These external forces also give rise to
other aspects of the game such as the best time to make a substitution, what
the best positioning of each player may be, who would do better to start and
more. These considerations give rise to more in depth play making and decision
making from both a player and coach perspective. With more computing time
and a more detailed environment however, one can add more generality to the
states and train the agent longer, thus allowing the model to find more tactics
than what it currently has found.

5.4 Future Improvements

In an ideal world, having access to a plethora of very specific data would have
helped greatly with training and simulating game situations, which would allow
more generality and freedom of decision making for the agent. Likewise, one of
many future improvements that can be made to the model were expressed in
the Environment section. Using a preexisting and accurate environment of an
NBA video game would give rise to the considerations missed above, since the
game already takes these into consideration, being fatigue, movement of other
players and more. Another improvement that can be made is to use distance
based shot metrics instead of region based. That data was available, but was
not used in the model. Theoretically however, since we track players by each
(x,y) point on the court, it is indeed possible to find the distance to net as well
as differentiate between each region (beyond three vs above three). Another
improvement that can be made is increasing the generality of other aspects of
the model such as moving players. The movement of other players can also the-
oretically be determined by the model as well, however it would require more
training due to the large number of possibilities. Overall, the improvements all
are related to increasing the generality and statistical accuracy of the model to
allow the model more creativity in its solutions. Another main improvement
is to audit the reinforcement learning algorithm used, and perhaps choose one
that better tackles the problem of sparse and stochastic rewards. Since in this
case, it takes quite a number of chosen actions and there is a non deterministic
way of receiving positive or negative reward, since it depends on the players
statistics, and even then there is a probability of the reward going either way.
Thus, picking a better algorithm leads to a model that better converges on a
result. There is a lot of recent work that tackles these issues. Such as the
LOGO algorithm which was demonstrated during ICLR 2022 [12] which was
built around training an agent with sparse reward when there is a sub-optimal
policy available to learn from. Or UCSG (upper confidence stochastic game al-
gorithm) [14] that generates confidence sets to pick the best model and performs
well for stochastic models, in fact it was designed to tackle problems involving
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markets, and board games 18. There is also the Stochastic reward machine
type algorithms presented during AAAI 2022 conference (performed well in a
harvesting environment where rewards are both sparse and random) [8] as well
as published by Dohmen et. al. [7] in 2021 that tackles sparse and stochas-
tic rewards. In general, as more algorithms solve the well known problem in
reinforcement learning related to training an agent with sparse and stochastic
rewards, one can improve the underlying methodologies used to train the agent
and can thus formulate even more interesting and accurate insights involving
making decisions. Many of these algorithms are extremely complicated to di-
gest, but do have applicability in this space of making decisions in a live and
random environment, as shown where some of these algorithms perform well
with handling problems in markets and board games which rely on numerous
random decisions from multiple parties, and thus would be an interesting prob-
lem to research and further try to understand in the realm of sports and play
making therein.

18but one flaw is that the games must be zero sum, but it allows us to train two opposing
teams at the same time since it is designed for multiple agents, thus may provide different
insights into the ideal way to play from both sides of the court
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6 Appendix

6.1 Dribbling Data

Table 2: Player Speed and Dribbling Statistics by Position

Position Avg. Speed (ft/s) Avg. Dribbles per Second Avg. Distance per Dribble
PG 4.53 1.37 3.27
SG 4.53 1.37 3.27
SF 4.47 2.16 2.21
PF 4.47 2.16 2.21
C 4.36 3.18 1.42

6.2 Environment Interaction Process



6.3 Regression Results

Table 3: Turnover Regression

Dependent variable:

PTS

(1) (2) (3)

STL −0.799
(0.660)

BLK 0.282
(0.662)

DREB 0.606
(0.294)

Constant 120.354∗ 113.199 94.520
(4.852) (3.119) (9.708)

Observations 30 30 30
R2 0.050 0.006 0.132
Adjusted R2 0.016 −0.029 0.101
Residual Std. Error (df = 28) 2.727 2.788 2.607
F Statistic (df = 1; 28) 1.466 0.181 4.251

Note: ∗p<0.1; p<0.05; ∗∗∗p<0.01
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6.4 Shot-charts and Heat-maps

Figure 5: Scottie Barnes Shot Chart
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Figure 7: Fred VanVleet Heat-Map

Figure 8: Fred VanVleet Shot Chart



Figure 9: Gary Trent Jr. Heat-Map

Figure 10: Gary Trent Jr. Shot Chart



Figure 11: OG Anunoby Heat-Map

Figure 12: OG Anunoby Shot Chart



Figure 13: Pascal Siakam Heat-Map
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